

Osteoclast and gp130 signals that regulate bone metabolism

Natalie A Sims NHMRC Senior Research Fellow Bone, Joint and Cancer Unit

Bone remodelling determines bone mass

Osteoblast: osteoclast communication

The Osteoclast Niche

Osteoclast niche

Signals from the osteoclast to the osteoblast

PTH treatment has two possible effects both mediated through a receptor in the osteoblast

Intermittent PTH stimulates RANKL expression

Transient activation of osteoclasts?

RNA: Femoral Metaphysis

Ma, et al. Endocrinology, 2001

Rapid effect of PTH on osteoclasts

(Holtrop ME, et al. Calcif Tissue Int. 1979;27:129-135)

Is the osteoclast required for the anabolic action of PTH?

Evidence for osteoclast requirement: PTH + bisphophonates

Alendronate inhibition of osteoclasts reduces the anabolic effect of PTH

(Black DM, et. al. N Engl J Med. 2003;349:1207-1215)

Tiludronate inhibition of osteoclasts blocks the anabolic effect of PTH

(Delmas 1993)

Is the osteoclast an integral mediator of the anabolic actions of PTH?

Altering SDF-1, OPG, or c-fos but not c-src inhibited the anabolic action of PTH

Does transient osteoclast inhibition reduce the anabolic action of PTH?

Calcitonin is a transient inhibitor of osteoclast activity

Osteoclast

Osteoclast + Calcitonin

Does calcitonin modify the bone-building effects of PTH?

Combine CT blockade of osteoclast activation with daily PTH treatment over 3 weeks.

- Vehicle
- PTH alone (30µg/kg)
- CT alone (0.5µg/kg)
- PTH + CT simultaneously

Unpublished data slide removed

Signals from the osteoclast to the osteocyte

Finding osteoclast derived factors that influence osteoblasts and osteocytes....

gp130 plays a critical role in intercellular communication in bone

gp130 mediates osteoclast formation in response to:

(Romas JEM 1996)

gp130 knockout: low bone mass

Neonatal lethal

- Many large osteoclasts
- Few osteoblasts

Coupling disrupted!

Balance shifted in favour of resorption - bone mass reduced

Almost identical phenotype observed in LIFR KO (Ware 1995)

Shin et al, Endocrinology 145:1376-1385, 2004

gp130-signalling cytokines

(Sims, Molecular and Cellular Endocrinology, In Press)

Human LIFR mutation - Stüve-Wiedemann / Schwartz-Jampel Type 2 Syndrome

Bent-bone dysplasia - death within the first few months of life - respiratory / swallowing difficulties, hyperthermic episodes

Mild forms - longer lifespan, progressive scoliosis, spontaneous fractures, flared joints, abnormal trabecular bone

(Dagoneau et al, Am J Hum Gen 2004)

LIFR expression in osteoblasts

(Allan J Cell Physiol 1990)

gp130:LIFR-signalling cytokines

IIED

(Sims, Molecular and Cellular Endocrinology, In Press)

CT-1 is expressed by osteoclasts

CT-1 in bone TRAP CT-1 in cultured OC (OC marker)

Walker JBMR 2008

CT-1 KO phenotype (4 days)

wild type CT-1 KO

Walker JBMR 2008

CT-1 KO phenotype (adult)

CT-1 KO phenotype (adult)

*, p<0.05; **, p<0.01; ***, p<0.001 vs wild type Walker JBMR 2008

Many large osteoclasts from CT-1 KO BMM+RANKL

Bone marrow + RANKL/M-CSF, males only

7 day cultures; **, p=0.01 vs wild type Data from >/=4 wells each of 4 expt

Large osteoclast phenotype in gp130 KOs

gp130 KO

+/+

е

But LIFR not in osteoclasts!

(Ware 1995, Shin, Endocrinology 2004; Bozec, Nature 2008)

CT-1 stimulates mineralisation in vitro and in vivo

6

Undifferentiated 4b10s

0.5 2 4 h 1 4b10 osteoblast-like cells

N=3 independent experiments, *, p<0.05; ***, p<0.001

OsM stimulates osteoblast differentiation at the expense of adipogenesis

Guiterrez 2002, Lane 1999

C/EBPδ activates osteocalcin transcription

Ducy MCB 1995; Shin J Mol Endocrinol 2006

CT-1 and OSM enhance osteocalcin promoter

activity

time (hours)

CT-1 stimulates mineralisation in vitro and in vivo

Unpublished data slide removed

Influence of CT-1 on the BMU

Walker JBMR 2008

Signals from the osteoclast to the osteocyte

Acknowledgements

Michael Sendtner, Univ. Wuerzburg, Germany (CT-1 KO)

Julian Quinn, Prince Henry's Institute, Clayton, Victoria

John Wark, Royal Melbourne Hospital (pQCT)

Animal facility staff All staff of the Bone Joint and Cancer Unit, SVI

